¹¹⁹Sn NMR Spectra of SnCl₄ -5H₂O in H₂O/HCl **Solutions**

XI-AN MAO*, XIAO-ZENG YOU and AN-BANG DA1 *Coordination Chemistry Institute, Nanjing University, Nanjing, China* (Received September 23, 1988)

Pentahydrated stannic chloride $SnCl₄·5H₂O$ was first reported in 1789 by Adet [1]. Unfortunately, so far its crystal structure data have not been reported. Its structure has been elucidated mainly by Raman [2], Mössbauer and nuclear quadrupole resonance [3] spectroscopy.

In the early investigations, Pfeiffer [4] concluded that $SnCl₄·5H₂O$ takes the configuration $SnCl₄·$ $(H₂O)₂·3H₂O$. This conclusion was confirmed by the later Raman investigation of Brune and Zeil [2], in which they suggested that in $SnCl₄·5H₂O$ four chloride atoms and two hydrated water molecules are arranged octahedrally around the central tin atom, and that the two water molecules occupy the trans-position only. They also suggested that the D_{4h} symmetry of the hydrate is preserved in the liquid state.

Aqueous solutions of $SnCl₄·5H₂O$ containing HCl have been investigated by many authors $[5-8]$. In extremely concentrated HCl solutions, no doubt $SnCl₄$ forms the $SnCl₆²⁻$ complex [5]. In lower [HCl] solutions or in pure water solutions, there have been some suggestions that there exist species such as $SnCl_{6-n}(H_2O)_n^{n-2}$ $(n = 1-6)$ [1, 6-8]. We here report $195n$ NMR spectra of SnCl₄.5H₂O in $H₂O/HCl$ solutions. We are able to assign the resonance lines to species of $SnCl(H₂O)₅³⁺$, $SnCl₂$ - $(H_2O)_4^2$, SnCl₃ $(H_2O)_3$, SnCl₄ $(H_2O)_2$, SnCl₅ $(H_2O)_4$ and $SnCl₆²$ respectively. This provides direct evidence for these complex species.

Experimental

The $SnCl₄·5H₂O$ used in this study was purchased from Shanghai 4th Factory of Chemical Reagents, as analytically pure. Samples were prepared by quantitatively dissolving $SnCl₄·5H₂O$ in water or in HCl solutions.

119Sn NMR spectra were recorded on a Varian XL-200 spectrometer with a broad-band probe. The probe was tuned to 74.553 MHz. The acquisition parameters were set as: spectral width = 50 000

Hz, acquisition time = 0.2 s, pulse width = 15 μ s $(\sim 45^{\circ})$, pulse interval = 0.25 s, data points = 20000, line broad factor = 50, and transient number = $3000 \sim 8000$, depending on the signal-to-noise ratio. The magnetic field was shimmed carefully and then was left alone, *i.e.* D lock was not established during acquisition. No proton decoupling was performed. Neat liquid SnC14 was used as the external reference with $\delta(SnCl_4) = -150$ ppm, with respect to $\delta(SnCl_4)$ $Me₄$) = 0 ppm.

Results and Discussion

119Sn NMR spectra were recorded for HCl solutions of $SnCl₄·5H₂O$ with HCl concentrations varying from 12 M to 0 M and with the Sn concentration kept constant $(SnCl₄ \cdot 5H₂O$:solvent = 1 g/1 ml, \sim 2.9 M). Parts of the spectra are shown in Fig. 1. In extremely concentrated HCl solutions, the tin atom must have formed the $SnCl₆²⁻ complex species$ [5] and only a single signal at -700 ppm or so was observed in 12 M, 11 M and 10 M HCl solutions (Fig. If). The much wider line-width must be due to the high viscosity of the solution. When the

Fig. 1. ¹¹⁹Sn NMR spectra of aqueous solutions of 2.9 M SnC14~5H20 with up to 12 M HCl.

0020-1693/89/\$3.50 0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Fig. 2. '19Sn NMR spectra of HCI-free aqueous solutions of $SnCl₄·5H₂O$ with various concentrations.

solution was diluted to 9 M HCl, the signal at -660 ppm began to appear. This can be assigned to the $SnCl₅(H₂O)⁻$ species. When the solution was further diluted, a signal at -630 ppm appeared and became stronger and stronger. This is the signal from SnC14- $(H₂O)₂$. The cis- and trans-species cannot be distinguished, possibly because (i) they might coincide with each other, or (ii) the *trans*-species might dominate the cis-one. In 3 M HCl solution, the signal from $SnCl₆²⁻ began to disappear and a doublet at$ -614 and -618 ppm can be seen. They are assigned to $SnCl₃(H₂O)₃⁺$ which also has *cis*- and trans-forms.

The ¹¹⁹Sn spectra of pure water solutions in which the Sn concentration was varied are shown in Fig. 2. We can see that the doublet of SnCl₃- $(H₂O)₃$ ⁺ overlaps in diluted solutions. New signals appeared at -605 and -600 ppm. The former is assigned to $SnCl₂(H₂O)₄²⁺$ and the latter to SnCl- $(H₂O)₅³⁺$. Under favorable conditions, we could distinguish the doublet of $SnCl₂(H₂O)₄²⁺$ (Fig. 2b). In rather concentrated solutions the signal of $SnCl₄$ - $(H₂O)₂$ is much stronger than the others, which confirms the suggestion of Brune and Zeil [2] that in the liquid state D_{4h} symmetry might still be preserved.

Burke and Lauterbur [9] have reported a $\delta =$ -590 ppm value for the ¹¹⁹Sn shift of Sn(OH)₆²⁻, just right in our hydrolytic series. One may find that the chemical shift effect of substitution of CI^- by H_2O is by no means linear. This is understandable because in high $[HC1]$ solutions, Cl^- is substituted by H_2O on hydrolysis of $SnCl_6^{2-}$, while in lower [HCl], zero [HCl], or basic solutions, $Cl^$ is in fact substituted by OH-.

Acknowledgement

The authors are grateful to the Laboratory of Magnetic Resonance & Atomic and Molecular Physics, Academia Sinica, for cooperation.

References

- 1 P. A. Adet, *Ann. Chim., I (1789)* 10.
- *2* H. S. Brune and W. Zeil, Z. *Ph.ys.* Chem. Neue *Folge,* 32 (1962) 384.
- 3 H. Negita, T. Okuda and M. Mishima, Bull. Chem. Soc. Jpn., 42 (1969) 2509.
- 4 P. Pfeiffer, 2. *Anorg. Allg. Chem.,* 87 (1914) 235.
- 5 0. Redlich, T. Kurz and P. Rosenfeld, Z. *Phys.* Chem., *Abt. B,* 19 (1932) 231.
- 6 J. Gueron, *Ann. Chim., 3 (1935) 305.*
- *7 M. J. Taylor, J. R. Milligan and D. L. Parnell, J. Inorg. Nucl. Chem., 34 (1972) 2133.*
- *8* L. Gmelin, *Gmelins Handhuch der Anorganischen Chemie,* Vol. 8, *Zinn,* Teil Cl, Verlag Chemie, Berlin, 1972, p. 321.
- 9 J. J. Burke and P. C. Lauterbur, 1. *Am. Chem. Sot., 83 (1961) 326.*